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Abstract—Special simplitied forms of a single degree of freedom model are used to study anomalous
clastic -plastic behavior of tixed-ended beams subjected to short pulse loading. Here the “anomalies™
referred to are unexpected sensitivites and counter-intuitive predictions computed for the permanent
deflection. The special cases treated are : (1) wholly clastic behavior in the recovery motion, following
clastic-plastic deformation in the swing to the first peak deflection; and (2) momentless behavior
of the *“beam™ model, corresponding to vanishing thickness. Used with diagrams of energy changes,
these help to clarify the general response and to show the links with some related analyses in the
recent literature.

I INTRODUCTION

The anomalics of interest may be observed in calculated responses for pin-ended or fully
tixed beams (Symonds and Yu, 1985; Symonds and Lee, 1989) and edge-fixed plates
(Galiev and Nechitailo, 1985) when the transverse pulse of pressure causes moderate plastic
deformations. Under these boundary fixing conditions transverse displicements require
middle surtace extensions. Thus moderate plastic deformations imply change of the beam
to a flat arch, and of the plate to a shallow shell. When the total energy available (potential
plus kinetic) is suflicient, unstable dynamic states and transitions akin to snap buckling
may oceur. Henee the final rest equilibrium state may involve the major displacement in
the opposite dircction to that of the load during the pulse, und other surprising effects may
be observed. By means of an energy approach (Borino er al., 1989) a Shanley (single degree
of freedom) model has been of great value in investigating these instability phenomena,
especially to account for the strong cffects of damping. Earlier studies on the undamped
structure have also used encrgy considerations (Reynolds, 1987 : Yankelevsky, 1988).

The two special cases considered here serve to illustrate some basic features of the
anomalous responses in perhaps the simplest possible manner,

2. PROPERTIES AND EQUATIONS Of THE MODEL

The model consists of two rigid bars connected to cuach other through a deformable
cell, with their opposite ends attached to fixed pins (Fig. 1). The cellis assigned the properties
of a sandwich beam whosc flanges exhibit lincar clastic -perfectly plastic behavior. This
cnables clastic-plastic beam behavior to be modelled in the presence of geometric non-
lincarity arising from the fixed end conditions. The parameters of the model are u = Efo,
and n = &/l, where E is the Young's modulus and o, the yicld stress of cach flange ; /i is the
separation between flanges and 2/ is the span. The flanges have equal arca A/2. Note that
the model is essentially defined by its equations: various pictorial representations are
possible (Symonds and Yu, 1985; Yu and Xu, 1988).

The displacement variable is taken as the angle ¢(¢) of rotation (¢ = time), Fig. 1. For
small ¢, *‘strain™ rates are defined as

299



300 P. S. SYMONDS e¢f dl.

P ¢ Zr

p —I le’z

o .

/ ]
¢ Lip
Q ¢ 2 !
| <€
——
(c) (d)

Fig. 1. The Shanley model. (a) indicates rigid bars attached by pins to rigid supports. (b) shows

deformable cell with notation for stresses : M, N are bending moment and axial force exerted by

cell. (¢) shows notation for displacement angle ¢ @ peak displacement due to short pulse is ¢, taken
as loading parameter. (d) shows elastic perfeetly plastic behaviour assumed for each bar.

= (p+n/2p: & = (p—n/2). (n

where subscripts 1, 2 refer to the upper and lower flanges, respectively, and ¥ = dx/dr.
Writing corresponding nondimensional stresses as 8, = 0,/6,, 8, = @,/0,, the strain rates
are made up of clastic and plastic components as follows :

=8 /u+dh €y =S /u+éh. 2)
The yield and flow rules are
[s,] <1
(s, 2 DL 20
5,0 =0 (3)

with 2 = [, 2; no summation over a. Integrating eqns (2),
sp= @ Hnp=2e0) 5 51 = tu(d® —np —268). “
The equation of motion (angular acceleration) is
JE+ich+s(P+n/2+s5:(b—n/2) = f(1) Q)

where J = 2ml/34a,, c. = (2Jun*) 2. { is the damping ratio, m is the mass of the half-beam,
and f= P(1)/ Aa, is the dimensionless pulsc force. Using expression (4), this takes the form

I +5eb+pe* + b+ uft = £0) (6a)

where
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1= n"—e -6 (6b)
B = lntet—¢f). (6c)

The corresponding work-encrgy equation (“first integral™) is written as

»
V4 T=U= {:’owD;,-D,,-{-f fde¢ (7a)
Py
where
b= (si453) 2
= dppt + g + b+ py {(7b)
T= U’ (7c)
4
D,= 1| (5, def +5,deh) (7d)
bo
h A
D, = i(‘,j ¢ do (7e)
Uy =V(ps)+ T(‘ﬁn) (70
v = M) + ()3, (Tg)

Equations {7} cun be derived by integrating eqn (5) with respect to ¢ from the reference
vatue . [t states that the total energy U decreases by the amount of plastic work D, and
viscous damping work £, reckoned from the reference displicement, and increases by the
amount of external work, il any.

Note that coctlicients a, fi, 7 depend on the plastic strains £}, 255 hence in general are
not constant. After plastic deformation has ceased -—under short pulse loading the structure
will shake down - the coctlicients in egns (6) and (7) are constants. Equation (6a) is then
a standard form of Dutling’s equation.

The work -energy relation eqn (7a) is a general form for any loading f(¢) and reference
state o, . We take ¢y, to be the first peak displucement, with o =0, and assume this is
reached after the pulse foree has deereased to vero. Thus ¢ is tuken as the single parumeter
of loading. This makes it unnecessary to consider details of the pulse, and is appropriate
since we are here concerned with the final state, not with the maximum deflection per se.
In other words we are concerned primarily with the “recovery™ (initially clastic, but in
general elustic plastic) following the peak displacement ¢, The plastic strains at the peak
displacement are assumed to be those resulting from unidirectional displacement from
$g=0tod =4,

This elimination of pulse details from consideration is allowed by the SDoF model,
but is not possible in treating the prototype beam/plate problems. There the shapes of the
maximum deflection and plastic strain ficlds will depend on the details of the pulse loading.
Unfortunately in the present problem the final state can be extremely sensitive to all the
fuctors that determine the ficlds of plastic strain and total encrgy. Results of numerical
solutions of eyns (6) and (7) are discussed in what follows, taking f(#) = 0 and magnitudes
Ejgg= =300,/ =6x10 *s° y = 00271 (cxcept in Scction 5 where the momenticss case
n = 0 is considered).

1. GENERAL FEATURES OF RESPONSE

Time historics and the final displacements have been obtained by numerical integration
of eqn (6) (sce Genna and Symonds. 1987, 1988 ; Borino et al., 1989). (Newmark and
central difference schemes have yielded essentially identical results.) The final displacement
plotted against the pulse strength parameter ¢, furnishes a “characteristic diagram™ for
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particular parameters. The example shown in Fig. 2 is for damping coetlicient [ = 0.01 and
the model parameters listed in Section 2. The dashed curves show for comparison the
envelope of the continuing elastic vibration of the undumped structure (J = 0). [tis seen that
the results culculated without damping fail to indicate the signs of the final displucements of
the damped model. The diagram for that case shows many narrow intervals (“slots™) in
which the final displacement is negative, i.e. in the (counter-intuitive) direction opposite
that of the loading. A wider slot appears between 0.086 and 0.091 which corresponds
roughly to the single bund of the undamped model. When the dumping coefficient is larger
(e.g. ¢ = 0.05) no such correspondence is observed even approximately, and the slots are
fewer and wider (Genna and Symonds, 1988).

These are seemingly complex behaviors. In impulsive loading problems one usually
ignores damping ; we know that the final elastic vibration is damped out. but we can estimate
the final deflection quite well from its mean undamped displacement. Here, ou the contrary.
it seems that one cannot even predict the sign of the final rest deflection from calculiations
made without damping. and the final state depends sensitively on the damping.

These behaviors, which are obtained from many hundreds of displacement-time his-
tories. reflect features of phase plane portraits, such as saddle points and separatrix curves
at certain values of the load parameter (see Symonds et «f., 1986 Genna und Symonds,
[987. 1988). However in the present class of problems where small plastic deformations
play a cnitical role. phase plane diagrams are not very helpful beciuse they indicuate these
effects only indirectly. Much more help in understanding the present phenomena is obtained
from an energetic approach (Borino ¢t al.. 1989 ; Perego et al.. 1989). This involves a simple
idca, but apparently not previously utilized, namely that of plotting together the elustic
strain energy b (ie. the potential energy) and the toral availuble energy U (1e. the sum of
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Fig. 2. Final displacement as function of initial displacement angle, for damping ratio | = 0.01
{from Genna and Symonds (1988)]. Dashed curves show envelope of final elastic vibration for case
of zero dumping. (b) shows expanded scales.
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the kinetic and strain energies), both as functions of the displacement variable. Examples
of these plots are given in Fig. 3, where ¥ is plotted with solid lines and U with dashed
lines. We review these results briefly here. as a preliminary to considering the special cases
of main interest in this paper.

Each diagram in Fig. 3 contains two continuous curves, each with many branches.
They start together at point O. They meet again at points where the kinetic energy vanishes,
which mark the successive extrema of the deflection. The U curve decreases smoothly
because of energy loss in damping. but shows abrupt drops when plastic dissipation occurs.
Eventually plastic deformation ceases, and the zig-zag pattern of the U curve depicts the
final elastic vibration, whose amplitude decreases in successive cycles. The V curve shows
abrupt changes in slope at points where plastic strain increments occur. These are marked
as points A and A, on both curves. in the traverse from O to B.

In the present single degree of freedom model it is found (empirically ; it is not true in
general) that plastic flow occurs ondy in the first swing from the starting point O to the first
minimum deflection, marked as B. Thus the first swing is depicted in Figs 3 by the curves
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Fig. 3. Encrgy diagrams for damping ratio { = 0.01. Solid lines show the strain encrgy V(b d,).
dashed lines show the total encrgy U o).
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O-A.-B in (1), (b), (c). by the curves O-A -A.-B in (d). (¢). and by curves O-A -B in
{f). Since the motion after reaching point B is wholly elastic. the strain energy curve
thereafter has constant shape (a quartic function with constant coeflicients). The state point
traverses it to successive peaks. as the amplitude decreases asymptotically to zero. The final
state is at one or the other of the two local minima of the ¥ curve,

The character of the response depends on the shape of the final | (strain energy) curve,
In the examples of Fig. 3 there is a “potential hill™ with crest at a small negative displace-
ment. This is a position of unstable equilibrium. lyving between two stable equilibria at the
local minima. The final } curve is governed by the prior plastic straining. This in turn is
affected by the damping. The U curve descends until one of its branches meets the potential
hill. It is then “reflected™. and for the rest of the response. it remains on the same side as
the original contact point. Which side it first strikes depends sensitively on the damping
coefficient and on the initial displacement. The origin of the “slots™ of Fig. 2 is apparent.

These illustrations show how the combined energy plots “open up™ the response
process, showing how the interplay between geometry changes. dynamics and energy losses
determines the final outcome. They must be obtained by numerical integration. There is
instructive value in considering two special cases that are simpler and allow further insight.
These are treated in the following sections.

4. ELASTIC RECOVERY

In the examples discussed above, the structure model is assumed to have the same
clastic -plastic material behaviors throughout the response. Important plastic strains actu-
ally oceur in the recovery motion, as well as in the preceding displacement. Here we shall
assume arbitrarily that the recovery motion is entirely elastic. In cffect we put a4 = ¢ for
time subscequent to reaching the peak displacement ¢,

The plastic strains &7, £, at angle ¢y, acquired alter unidirectional displacement, are

g ‘
o = (hs+udy) - ! H(py - ‘M)”) (8a)
2 i

|
the = [‘) (‘/’(31 —Hdy)~ l] H(py~ ‘ls‘uz)) (8b)
2 u

where

HF)y=1 tftor Fz20
H(FYy=0 for F<Q0,

for 4 = 0.0271: ¢\" = 0.058447, > = 0.085547.

With &7, 5, inscrted for &5 and % in eqns (6) and (7). all cocflicients in eqns (6a) and
(7a) arc constant.

Although ““clastic recovery™ is apparently an artificial concept, the behavior does
represent essential features of the prototype uniform beam problem. In the real problem
the pulse loading produces fields of plastic strain and specific total energy. In order to
predict the final rest configuration, one must know both of these ficlds. They require step-
by-step numerical integration, and hence are never known “exactly”. When elastic recovery
is postulated these ficlds can be regarded as known parameters. Study of this case is a simple
wiy to show many of the general features of the complex uniform beam problem, excluding
possible difficulties associated with numerical computations of plastic strains. Also, of
course, comparisons with solutions for the clastic-plastic case enable one to assess the role
of the actual further plastic deformations subsequent to the peak deflection.
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Fig. 4. Elastic recovery case : final displacement as function of the starting angle. for damping ratio
§ = 0.01. Dashed lines show envelope of final vibration for the undamped. elastic recovery case.

A characteristic dingram for the elastic recovery case is shown in Fig. 4. This shows
the final displacement as a function of ¢, for damping ratio { = 0.01. There are 16 narrow
“slots™ with negative values. Also shown for comparison (dashed lines) are the envelope
curves for the elastic vibration in the undamped case. Note that when damping is omitted
there is no indication that negative final displacements will occur; the vibration switches
from a (4)-(—) toa (+)-(+) type at ¢, about 0.096, but there is no range in which the
envelope is wholly negative. In contrast, the final displacement of the damped motion is
frequently negative for ¢, in the range between about 0.085 and 0.096.

This alternation between positive and negative final displacements can be predicted
immediately from the energy diagrams already discussed. These make it clear that if the
strain energy curve V(o y) has two distinet relative minima separated by a “potential
hill™, the final state will oscillate between the two stable equilibrium positions as the initial
displacement is varied. Unlike the examples of Fig, 3, the function V(g ¢py) of eyn (7h)
can be plotted at once without the need for numerical integration of egn (6a), since the
plastic strains £, &%, are known in terms of ¢, fegns (8)]. Figure 5 shows F(¢h) for a typical
case, ¢y = 0.09, This figure also shows the curves of total energy U(h) for three values of
damping ratio {. When { =0, U stays constant at the initial value U,. [By eqn (7b).
Uy=Ve=(1+1)2u =25x 10 *] Curves for two nonzero values of ¢ are included. These
show U decreasing in zig-zag fashion until the curve strikes and is reflected from the
potential hill. The value of ¢, is such that contact is made on the left-hand side. Thereafter
the vibration remains on this side, and the negative static equilibrium position ¢,.» is finally
reached. With a small decrease of { to £, the contact point switches to the right-hand side
of the hill, and the final state is on the positive side.

Strain and total energy *10°

"'1 ’;'1 i 2

00- ‘ ; et
-008-004 000 004 008 012
Rotation ¢ [rad]

Fig. 5. Elastic rccovery case: strain energy V(g: o) for b, = 0.09 (solid curve); total encrgy
Ut ) curves for two slightly different damping ratios §, and §; (dotted and dashed, respectively).
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When ¢, is gradually increased. with ¢ held constant, the alternation in final dis-
placement occurs because the crest of the potential hill rises relative to the U, ¢hy) curve.
The process is the same as that depicted in Figs 3a and 3b. the only difference being that
in the elastic recovery case. the ¥{¢g: $,} curve is computed from the plastic strains pos-
tulated at the start. rather than computed by step-by-step imtegration.

Prediction of the final displagement for any specified values of ¢, and J requires step-
by-step integration of eqn 6a. This is straightforward unless J is very small. as fur as the
mathematica! problem is concerned. The range of ¢, tn which the anomalous “slots™ occur
can be estimated. however, making use only of properties of the V{$: ¢,) curve. This has
been done for the elastic-plastic case {Borino et ¢l 1989}, It is much casier when elastic
recovery is assumed, and is worth briefly sketching.

A negative final displacement can occur only it the (¢ b)) curve exhibits the general
shape of the typical case drawn in Fig. 5. There must be three distinct real roots of the
equation for static equilibrium d¥/d¢ = 0, hence of the equation

&' rahp+f=0 {9a}

where
=" ~Pi e+ 270 {9b}
B = —lg{ds 4y —2000 {9}

These are for &, 3 0, 5, 2 0, A lower bound on ¢, for anomidous linal displacements is
provided by the well known condition for coalescence of real roots of a cubic equation. in
the present case this condition requires

%! =0 )
1+4/i 0. (1o,

where =, f# are functions of ¢, 83 i egn (91 Solutions of egn {10) provide a fower bound
P

At large vadues of ¢, the ¢rest at g of the potential hill lies above the starting value
V(o dy). The response is then always on the positive side of the hill, The limiting condition
iy expressed by the equations

Flperihy) = Flhy i) {1ia}
FiApide) =0, {1ib)
where 17 = dV/dé.
Now z and J} correspond to e, # 0, t5; 2 O, and are exprossed by
2= -2 -4 {11c)
f= "}')‘:Q"u- (Hdh

Solutions of eqn (11} provide an upper bound ¢f for n=0.027[, ¢ = 0.083984,
¢ = 0.095887. The limiting V(¢ @u) curves are drawn in Fig, 6 (solid lincs).

3. MOMENTLIESS BEAM MODEL

We consider next the special ease of a model that has no flexural resistance, by taking
the parameter # = i/l = 0. Thus. the two flanges of the sundwich beam reduce to a single
thin Range of area 4. which has strain £ and dimensionless stross 5 = o/, In addition to
the basic egns {3}, where 5, = 5, we have
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Fig. 6. Elastic recovery case: strain energy F(¢: ¢,) for different sturting angles. (1) ¢y = ¢§ =
0.083984: (b) ¢, = 0.085547 (elastic limit for the bottom bar, ie. &5 >0 for ¢, > 0.085547):
(©) by = 0.09 (typical); (d) d, = ¢§ = 0.095887.

£= @2 5= p(@2-") (122.6)
Jh+Lledb+ud’ =2ubd = f(1). (13)

[The damping coefficient may still be written in terms of a damping ratio { and critical
damping coeflicient ¢, defined as before for a model with nonzero #; numerical values of §
refer to ¢, computed from the previously listed values of J, i, 0 sce cqn (6).} As before, we
assume that the pulse produces a peak displacement ¢, which is taken as the loading
parameter. The corresponding stress and plastic strain state are assumed produced by
unidirectional displacement. We put f(1) = 0 during the subsequent recovery motion.

With 7 = 0 it is found that plastic flow occurs only during the first swing to the peak
angle ¢h,. Therealter the plastic strain remains constant at the value ef reached when ¢ = ¢
and s = 1, namely

, |
£ = »‘«(b;,-——». (14
2 i

Thus the threshold for plastic deformation is ¢% = (2/u)"/*. The energy rclation eqn (8)
now involves the strain energy V with € = ¢f so that

1, > 1, 1., IV
V(¢:¢>u)=u(§¢'—£‘«’,) =u(§¢'—§¢a+;). (i5)

The positions of stable static equilibrium (local minima) arc
bp = £(2:0)" = £ (5 —2w)'". (16)
The diagram is now symmetric in ¢, and the crest of the potential hill at ¢ = 0is at
V(0:¢0) = u(eh)* = Lu(ds—2/p) . (mn

The full range of dynamic behavior can be deduced from the V(¢ : ¢,) diagram. Figure 7
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Fig. 7. Momentless (thin) beam case : strain energy V(o do) for different starting angle vilues : solid
curve, @, = ¢, = 0.070710678 ; dushed curve ¢, = 0.09 (typical) : dotted curve. ¢, = ¢, = 0.10.

shows V(¢ ; ¢,) for several values of ¢, at or above the clastic limit ¢% = 0.07071. Consider
as a “typical” case ¢, = 0.09. Motion starts at point 0, where U(dy: o) = F(dy: ¢y) =
1/u = 25 % 10 ~*. Suppose first that damping is zcro. Then the total encrgy U(¢ : ¢,) remains
at this value, while the state point traverses the V(g ¢,) curve between 0 and B the
vibration continues indefinitely between these limits. The kinetic energy is represented by
the distance from the line OB to the V(¢ ¢,) curve, and the phase plane diagram has an
hour glass shape (as in Fig. 10b), symmetric about the ¢ and ¢ axes. As ¢, is increased,
the value ¥(0; ¢) eventually reaches the starting value F(y 1 o). By eqn (17) this happens
at ¢ = (4/w)"* = 0.1. At larger values of ¢, the potential hill extends above the line for
U = U,, and the vibration remains on the positive side.

When damping is included (¢ > 0), the final state is at one of the two stable equilibrium
points ¢ = +(2:5)"3, eqn (16). Which ol the two is reached depends sensitively on { and
¢, From the discussion in the previous sections, it is obvious that the final displacement
will alternate in sign cither as { is increased, with ¢, constant; or as ¢ ts increased, at
constant . A negative final displacement can occur when ¢, cxceeds the elastic limit
&5 = (2/1)"*, which is a lower bound, so that

by = (/):i = (2/11)1 : < ¢y € ‘/’fiy = (4//‘)( % (18)

The characteriste diagrams for ¢ = 0 and { = 0.06 are shown in Fig. 8, from data
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Fig. 8. Thin beam case: characteristic diagram for damping ratio = 0.06 dashed lines show
envelope of the final vibration for the undamped, # = 0 case. (@) and (b) show ditferently expanded
scales.
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obtained by numerical integration of eqn (13). These agree with the descriptions outlined
above. However, the pattern of *“'slots™ exhibited by the curve for the final displacements
of the damped model differs in important respects from those of Figs 2 and 4. The lower
bound on their appearance is the elastic limit ¢§. and the calculations indicate that as ¢5 is
approached from above they become extremely narrow and difficult to identify. This
difficulty can be understood by inspection of the energy diagrams of Figs 9a. 9b. Asindicated
in Fig. 9a (for ¢, = ¢}). the beam executes infinitely many oscillations during its asymptotic
approach to the final rest state at ¢ = 0. As @, is increased slightly above ¢, as in Fig. 9b.
the descending branches of the U(¢ : ¢,) curve are reflected in turn from alternate sides of
the potential hill of the F(¢: ¢,) curve as it rises. These branches change slightly as ¢, is
increased. but if this is ignored, the alternation of the final state between the values +(2¢5)' *
can be visualized as cutting successive branches of the U(¢: ¢,) curve for ¢, = ¢f. Any
finite rise from zero of the hill implies in the present case cutting an infinite number of
infinitely close branches. Computing all the slots in this case is not merely difficult but
impossible, since the width of the slot vanishes as ¢f is approached. This is in contrast with
the elastic recovery case treated above, where for finite  the first slot encountered as ¢, is
increased has finite width. Difficulty in locating its boundaries is encountered only if { is
extremely small. In the momentless beam case. however, the ditliculty is present whatever
the damping magnitude. The basic difference is the symmetry of the (¢ @,) curve.

To apply thesc ideas in quantitative terms, we derive an approximate expression for
the widths of the slots shown in Fig. 8. Assuming that the U(¢ : ¢b,) curve changes negligibly
as ¢ is increased, the width of a slot is approximately equal to the increment A¢, such
that the increase in V(0 ) corresponding to A, is cqual to the energy loss in damping
in onc half-cycle. In order to estimate the latter, we shall assume that an approximate
expression for the veloeity can be used which satisfies the main requirements of encergy
conservation. Thus, to make our estimate we assume that
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Fig. 9. (a) Thin bcam casc: strain energy V(¢ . do) (solid) and total encrgy U(d: ¢,) (dashed) for

o = ¢, = 0.070710678. Damping ratio { = 0.06. (b) Thin beam case: strain energy b (¢ dy) (solid)
and total encrgy U(d : ¢,) (dashed) for ¢, = 0.075. Damping ratio ¢ = 0.06.
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O D) Yo
0P g g 20 | b, (19)
(’(bll &
where ¢,, is the deflection amplitude. Note that
2(6%)1 : S ¢m S d)() (20)

since the amplitude decreases from ¢, to the value such F(p,,: ¢,) = ¥(0: ¢,); by eqn
(15). ¢,, = 2(e)' °. To obtain ¢ in eqn (18) we write the following approximation for ¢(¢) :

¢(1) = ¢, [x cos pr+ (1 —2) cos 3pi] (21a)
d(1) = —pep,,[xsin pr+3(1 —2) sin 3pr]. (21b)

where for a typical half-cycle the argument pt € [0. n] corresponds to ¢ € [P,.. — ..]. neglect-
ing the decrease in amplitude due to damping in the half-cycle. We obtain reasonable values
of x and p by matching known kinetic encrgies in the undamped case at pr = /2 and pt,
where ¢ has minimum and maximum values, respectively. for pre (0. 7).

The results are

9—8x |'°
] — R . .
st pt, = [36(1 —z)] (22m)
. , 102 —a) p bu P j 79
(pt = pt.): po= ©—8%)" Jb. l:z —eh) _ (22b)

(pt=m2): Mpi@x-3) P = S — ). (22¢)

Eliminating p between the Last two, a general relation between 2, ¢y, and o, is

on q( Py
(9 --8%) 1= . 4(4‘4", . 23)
811 —2) (42 ~3)" Paehr, — %)
Taking ¢, = 2(:5)' °, we obtain
3 , I . (242.b)
oA = - )T = L0 <4d,
g Ty
Y Je | 3 ] o I T O
A, = ‘ = 0.083 5 — ) 254
4 8 P, |:8,u./ b 2(/)” i (254)
For { = 0.06 in our cxample we have
<5 |2
Adp, = 0.00352 [l - - ] . (25b)
Hepi

These results, egns (25). show the slot width vanishing both as ¢ approaches zero and
as ¢ approaches (2/p) ' 2. the elastic limit. In cither case the final deflection becomes difficult
or impossible to compule. In the previous cases with 4 > 0, the final response becomes
unpredictable in the limit as € = 0, 0 < { < &. The present case involves a new type of
computational unpredictability, not requiring ¢ to be small.

The magnitudes predicted by eqn (25b) have been compared with those according to
the data for Fig. 8. The coefficient 0.00352 is too large. If it is replaced by 0.00268 it gives
an excellent fit for the first 10 slots. The assumptions underlying these results are probably
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more accurate at smalier { values. The approximate vibration frequency given by eqn (22b)
has been compared with exact values. expressed in terms of an elliptic integral. Putting
¢.. = ¢, and solving eqn (23) for x, the result for p is very close to the exact value except
near the transition point ¢, = (4,u)' *, where it gives a finite magnitude instead of zero.

To show relations to other work we may adopt a different point of view. Up to now
we have considered the “impact problem™, namely that of finding the final displacement of
a straight beam that is subjected to a short pulse loading. We now consider the behavior
of the initially deformed beam. i.e. of a shallow arch, which is subjected to various further
loads. Its shape is defined by the plastic strain &} due to the original pulse loading. We take
its “natural” state to be the positive equilibrium position ¢, = (2&})' *. It is convenient to
write v = ¢/dpr = ¢/(2c5) " °. The equation of motion is

Jopi+ e ey +udiv —udiy = g(r). (26a)
This can be re-written as
F4yr+ bt =ty = K1), (26b)
writing v = dy/drt, replacing the physical time ¢ by a dimensionless time 7. where
T = 1Qudi/D) .

The energy equation corresponding to eqn (26b) is written as follows in terms of “initial™
values yy, 1.

T+V=U=T,+ P"(.—}'J ¥ dy+f Fdy (27a)

Yo X0

where

T(¥) =47 V() =407 =1)?
Ty =T(3): Vo= V(r). (27b,c)

The behavior of the system governed by eqn (26b) was studied by Dowell and Pezeshki
(1986) . sce also Dowell (1988). They carried out numerical integrations to obtain time
histories, phase plane plots and Poincaré maps for cxcitation defined cither by initial
conditions with ¢(t) = 0, or by external sinsusoidal forcing F = F,sin wt. In the first
(“‘autonomous’) case, phasc plane diagrams were constructed which show the zones within
which the initial conditions lcad to trajectories which cross the y = 0 axis 0, 1, 2... times
(termed “shell plots™ from their appearance). The trajectories that bound the lowest zones
appear to have significance in connection with the onsct of chaos, as explored in their
investigation of the sinusoidally forced system.

Here we do not add materially to the results of Dowell and Pezeshki's (1986) study.
However, the new energy plots do perhaps make the shell diagrams and their significance
intuitively morc transparent. From sketches of U and V the main features of both the
undamped and damped autonomous response can be quickly recognized qualitatively and
calculated approximately.
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Fig. 10. Plastically strained thin beam with zero damping. Relation between energy diagrams (a)
and phase plane diagrams (b). Heavy line at total energy level U, corresponds to separatrix curve
in phase plane. }is elastic strain gnergy. v is displacement viriable. Shaded area in energy diagram
indicates locus of energy levels subh that motion remains on one side or the other of the axis y = 0.

The undamped case is illustrated in Fig. 10, where Fig. 10a shows the encrgy plots.
Here the total energy U is constant at its initial value, and the corresponding horizontal
lines are drawn for three values. The middle one of these with U = U, corresponds to the
scparatrix in the phase plane diagram, Fig. 10b. At a smaller value U, < U, the vibration
lics between positive displacement limits, while for the case U, > U, it lies between equal
positive and negative values.

Figure 11 illustrates the behavior when damping is present. Suppose the motion is
started tfrom rest at O,. The dashed line shows approximately how the curve of total energy

—\O
a

(b)

Fig. 11. Plastically strained thin beam with damping. Relation between energy diagrams (a) and

phase plane diagrams (b). Straight lincs in (1) are crude representation of total energy variation as

functions of displacement y. Corresponding phase plane curves are shown in (b). Shaded area in

(a) indicates locus of initial energy such that the resulting motion remains on one side of the axis
vo=0.
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U descends as energy is dissipated in damping. In each branch the curve is drawn crudely
as a straight line, representing the average slope of the actual curve whose stope varies from
zero at each end to maximum values near the equilibrium points v = + 1. The curve starting
from O, strikes the potential hill at D, and leads finally to the equilibrium point y = —1.
On the other hand, a starting point at O, leads (dot-dash curve) to contact with the right-
hand side and finally to equilibrium at y = +1.

Also drawn in Fig. 11a are two curves (solid lines), each with several branches. One
branch in each curve just touches the potential hill. These also are sketched crudely as
straight lines. The actual curves would make contact at the center (at zero slope), instead
of slightly to one side, but this discrepancy is unimportant for present purposes. Pairs of
these curves mark the boundaries of zones of starting conditions such that the final state is
either + 1 or — 1. For example. a motion started from rest at any point between P, and P,
ends up at y = 1. From these curves, with account taken of the signs of the velocity, one
can readily sketch the corresponding contours in the v, ¥ (phase) plane, i.e. the “shell plots™
of Dowell and Pezeshki (1986). Figure | 1b shows sketches of the first few zones of a typical
shell diagram. Note that the shaded area of Fig. [ la defines the locus of energies such that
no crossing of the y = 0 axis takes place. The U(y). V(1) energy plots are essentially
equivalent to the y, y phase plane plots. but are perhaps simpler and closer to the basic
mechanics. They may help to understand the seemingly more complex phase plane diagrams.
For example, they make it obvious that the shell diagram consists of two distinct interleaved
curves,

To illustrate how the two types of plots may be used together, we note that the width
Ay, of the first zone of the shell diagram computed by Dowell and Pezeshki (1986) can be
estimated by the approxifhate approach used in the previous section to estimate the slot
widths ol the original “impact problem™, By inspection of Fig. b it is scen that

V()
N )(j Ay, =vf ydy. (28)
(&5 3] Yo

Evaluating the RHS approximately by the same process as was used following eqn (19),
we obtain

172
Ayy = "9 n <}> = 0.026 (29)
7 8 l() A2, 4

Here we have put 3 = 0.0168 as used by Dowell and Pezeshki (1986) ; the result agrees well
with the spacing shown in their Fig. 2.

6. CONCLUSIONS

These examples are meant to illustrate as simply as possible how the geometry changes
duc to plastic straining interact with energy transfers and losses to control the approach to
the final deformed state. In these nonlinear problems, where small plastic deformations
may play a crucial role, the new energy plots show directly the occurrence of plastic strain
increments, and their effect on the evolving response. In contrast, phase plane diagrams
give only indirect evidence of these interactions, and by themselves in the present problems
they are of little use.

The energy concepts provide insight into the nature of the solutions. For example, the
initial conditions that lead to certain final displaccments may be plotted as points in a planc
where the axes are the initial displacement and velocity. There arc well-defined bands within
which the initial conditions lead to a negative final displacement. Elsewhere they result in
a non-negative final state. These bands depend strongly on the damping cocflicient. Exam-
ples are given by Perego et al. (1989). Consideration of the energy diagrams with damping
shows at once why the boundaries between these “attracting basins™ are smooth curves
that in general can be calculated accurately by standard methods. The exceptional situations
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(very small dumping and vanishing bending resistance) are elucidated by the energy dia-
grams of the “special cases™ discussed here. Contrary to the implications of a recent paper
(Poddar et ul., 1988) these boundaries have no fractal structure (see Symonds et al., 1988).
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