
1", J 5oluJ.s 5lrt1C"'rr, V,,1. 27. ~o. J. pp. ::<I'J-J14. 1'I'l1
Pnntcd In Great Bnwn.

OO~~7M3 91 $3.00 + .00
<.~ tlI'If) Pergamon Prns pic

SPECIAL CASES IN STUDY OF ANOMALOUS
DYNAMIC ELASTIC-PLASTIC RESPONSE OF BEAMS

BY A SIMPLE MODEL

P. S. SY'IONDS
Division of Engineering. Brown University. Providence. RI 0~'11~. U.S.A.

and

FRANCESCO GENNA and ANTONELLA C1ULLINI
Department ofStruetural Engineering. Politecnico di Milano, 20133 Milano, Italy

(Rl'('('il'ed 10 AIIf/11Sl l'IlN; in rl'l'ised/imll 5 Decl'mha l'Ili9)

Abstract-Special simplitied fom1s of a single degree of frt:cdom model arc used to study anonwlous
c1astic~plasticbehavior ofti~ed·endcdbeams subj~'l:tcd to short pulsc loading. Hcrc thc "anomalies"
referred tll arc une~I"-'l:ted sensitivites and counter-intuitive predictions computed for the permanent
detlection. The special eases treated arc: (1) wholly elastic behavior in the fl'wvery motion, following
c1astil:-plastic deformation in the swing to the first peak detl~"i.·tion; ;lIId (2) momentk'ss behavior
of the "beam" model. corresponding to vanishing thickness. Used with diagrams ofenergy changes.
these help to clarify the general response and to show the links with some related an;,lyses in the
recent literature.

I. INTROf)( JeTION

The anomalies of interesl may be observed in calculaled responses for pin-ended or fully
Iixed beams (Symonds and Yu. 19l<5; Symonds :tnd Lee. IlJXlJ) and edge-fixed plates
(Galiev and Nechilailo. IlJX5) when the lransverse pulse of pressure causes moderate plastic
deformations. Under these boundary fixing conditions transverse displacements relJuire
middle surf:tce extensions. Thus moderate plastic deform:ltions imply change of the beam
to a fl.tt arch. and of the plate to a shallow shell. When the total energy available (potential
plus kinetic) is sullicient. unstable dynamic stales and transilions akin to snap buckling
may occur. Hence the Iinal rest elJuilibrium slate n14lY involve the major displacement in
thc oppositc direction to that of thc load during the pulsc. and other surprising clrccts may
be observed. By means of an encrgy approach (Borino t'1 al.• 1989) a Shanley (single degree
of freedom) model has been of great value in investigating these instability phenomena.
especi:tlly to account for the strong effects of damping. Earlicr studies on the undamped
structure have also used energy considerations (Reynolds. IlJX7: Yankclevsky. 19XX).

The two special cases considered here serve to illustrate some basic features of the
anom:lIous responses in perhaps thc simplcst possible manncr.

2. PROPERTIES AND EQUATIONS OF TilE MODEL

The modcl consists of two rigid bars connccted to each othcr through a derormablc
ccl!' with thcir opposite cnds :1ttached to lixcd pins (rig. I). The cell is assigned the propertics
of a s:lI1dwich beam whose fl:lI1gcs cxhibit line:tr clastic -pcrfcctly pl:tstic bch:lVior. This
enablcs elastic-plastic beam bchavior to be modellcd in the presencc of geomctric non
linearity arising rrom the fixed end conditions. The parametcrs or the modcl arc 11 = £/(1u

and '1 = "/1. where £ is the Young's modulus and (10 the yield stress of each flange;" is the
separation bctwecn flanges and 21 is the Sp:lI1. The flanges have equal area ,.1/2. Note that
the model is essentially defined by its equations; various pictorial representations arc
possible (Symonds and Yu. 1985; Yu and Xu. 1988).

The displacement variable is taken as the angle cPU) or rotation (t = time). Fig. I. For
small cP. "strain" rates are defined as
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Fig. I. The Sh,lOley modcl. (a) indkates rigid bars all,u;hed by pins to rigid supports. Ib) shows
deformablc cell with not,llion for stresscs; M. N arc bending moment and axial force exertt:d by
cell. Ie) shows lHltatioll for displ,lcelllcnt ,lI1gle ." : peak displilcement due to short pulse is ,po. taken

as loading parameter. (dl shows elastic perfectly pl;lstic hchaviour assumed for each bar.

(I)

wh~r~ subsl:ripts I, 2 r~r~r to th~ upp~r and low~r flang~s, r~spectivcly. and .r = dx/dt.
Writing corr~sponding nondirncllsional str~ss~s as s, = (1,/(10' .\'~ = (12/aO' the strain ratcs
ar~ made up ~)r elastic ~lIld plastil: components as follows:

(2)

The yield and flow rules ar~

Is,1 ~ I

(s, ± I )I;~ ~ 0

(3)

with =t = 1.2; no summation ov~r '7.. Integrating cqns (2),

(4)

Th~ equation of motion (angular acceleration) is

(5)

where J = 2",1/311(111. Cc = (2JW1 2
) "2.' is the damping ratio.", is the mass of the half-beam.

and f = P(t)/Aa ll is the dimensionless pulse force. Using expression (4). this takes the form

where

J(~+ 'C,(~ +Wp3 + JI!X¢ +Jill = f(t) (6a)
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The corresponding work-energy equation ('"first integral") i:. written as

where

v = (si +.d)j:!jl

=lJUP~ + ~jl7.<P~ + jl{l<p + jli'

T= !Je!JZ

Un = V(efln) + nebn)

i = H<f:l; ) ~ + (f:~ ) l
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(6b)

(6c)

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

(7g)

Equalions (7) can ht: <.kriwd hy intt:gmting eqn (5) with respect to cP from the reference
value e/ln. It stalt:s thaI Iht: lolal t:nt:rgy U dt:creascs by the "mount of plaslic work D1, "nd
viscous damping work /), reckoned from the rderence displacemenl. and incre"ses by Ihe
amounl of exlernal work, if any.

Note Ihat codlkients :x. It. i' depend on the plastic stntins ,;1;. r.~; hen<.:e in gener'll 'Ire
not constant. Arter plasti<.: dt:formation has <.:east:d·under short pulse loading the stru<.:ture
will shake down Ihe codlkients in eqns (6) and (7) arc <.:onslants. Equation (6a) is then
a standard form of Dulling's equation.

The work· energy relation eqn (7a) is a general form for uny loading l(t) and reference
state eflu. efin. We take epn to be the tirst peak displa<.:ement. with (bn = 0, and assume this is
readled after the pulse for<.:e has dl.'Creased to zero. Thus (Pn is taken as the single parameter
of loading. This makes it unnecessary to consider details of the pulse. and is appropriate
since we an: here concerned wilh the fin;t\ stale. not with the maximum dellection per SI!.

In other words we are concerned primarily with the "recovery" (initially elastic. but in
genentl c1aslic plastic) following the peak displacement <Pn. The plastic strains at the peak
displacement are assumed to be those resulting from unidirectional displucement from
c/J = 0 to cP = (/,".

This c1iminution of pulse details from consideration is ullowed by the SOoF model.
but is not possible in treating the prototype beumjplate problems. There the shapes of the
muxirnum dd1cction and plastic strain fields will depend on the details of the pulse loading.
Unfortunately in the present problem the Iinal state cun be extremely sensitive to all the
t~lctors that determine the fields of phlstic strain and total energy. Results of numerical
solutions ofeqns (6) and (7) ure discussed in what follows. taking l(t) = 0 and magnitudes
E/rTo = Jt = 400. J = (, x 10 K S~.ll = 0.0271 (except in Section 5 where the momentkss cuse
'1 = 0 is considered).

3. GENERAL FEATURES OF RESPONSE

Time histories und the final displacemellts have been obtained by numerical integration
of eqn (6) (see Genna and Symonds. 1987. 1988; Borino et al.• 1989). (Newmark and
central dilTerence schemes have yielded essentially identical results.) The final displacement
plolled against the pulse strength parameter ¢o furnishes a "characteristic diagram" for
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particular parameters. The example shown in Fig. 2 is for damping coefllcient ~ = 0.0 I and
the model parameters listed in Section 2. The dashed curves show for comparison the
envelope of the continuing elastic vibration of the undamped structure (; = 0). [t is seen that
the results calcu[ated without damping fail to indicate the signs of the final displacements of
the damped model. The diagram for that case shows many narrow intervals ("·slots··) in
which the tlnal displacement is negative. i.e. in the (counter-intuitive) direction opposite
that of the loading. A wider slot appears between 0.086 and 0.091 which corresponds
roughly to the single band of the undamped model. When the damping coefllcient is larger
(e.g. ~ ~ 0.05) no such correspondence is observed even approximatdy. and the slots are
fewer and wider (Genna and Symonds. 1988).

These are seemingly complex behaviors. In impulsive loading problems one usually
ignores damping; we know that the final elastic vibration is damped out. but we can estimate
the final deflection quite well from its mean undamped displacement. Here. on the contrary.
it seems that one cannot even predict the SiYfl of the final rest dctlection from calculations
made without damping. and the final state depends sensitively on the damping.

These behaviors. which are obtained from many hundreds of displacemcnt·-time his
tories. retleet features of phase plane portraits. such as saddle points and separatrix eurves
at certain values of the load parameter (see Symonds I.'t al.. 1986; Genna and Symonds.
1987, 1988). However in the present class of problems where small plastic deformations
playa critical role. phase plane diagrams arc not vcry helpful because they indicate these
C'lfects only indirectly. Much more help in understanding the present phenomena is obtained
from an energetic approach (Rorino ('I al.. (989; Perego cl al.. 1989). This involves a simple
idea. but apparently n(lt previously utilized. namely that of plotting together the clastic

strail/ cller.IIY ~. (i.e. the potential energy) and the tllla! al'ailah!c cl/cr.IIY U (i.e. the sum of
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Fig. 2. Final displ.u:emenl as runction or initial displacement 'lngle, ror damping ratio ~ '" (>.0 I
lrrom Genna and Symonds (19K!!)I. Dashed cur\es show envelope or final clastic vihration ror case

or lero damping. (0) shows c;'(panded scales.
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the kinetic and strain energies). both as functions of the displacement variable. Examples
of these plots are given in Fig. 3. where V is plotted with solid lines and U with dashed
lines. We review these results briefly here. as a preliminary to considering the special cases
of main interest in this paper.

Each diagram in Fig. 3 contains two continuous curves. each with many branches.
They start together at point O. They meet again at points where the kinetic energy vanishes.
which mark the successive extrema of the deflection. The U curve decreases smoothly
because of energy loss in damping. but shows abrupt drops when plastic dissipation occurs.
Eventually plastic deformation ceases. and the zig-zag pattern of the U curve depicts the
final elastic vibration. whose amplitude decreases in successive cycles. The V curve shows
abrupt changes in slope at points where plastic strain increments occur. These are marked
as points A I and A~ on both curves. in the traverse from 0 to B.

In the present single degree of freedom model it is found (empirically; it is not true in
general) that plastic flow occurs (lnly in the first swing from the starting point 0 to the first
minimum deflection. marked as B. Thus the tirst swing is depicted in Figs 3 by the curves
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Fig_ 3. Energy diagrams for damping ratio':: 0.01. Solid lines show the strain energy V(rp; "',,).
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o-Ac-B in (a). (b). (c). by the curves O--A ,-A=-8 in (d). (el. and by curves o-A 1-8 in
(f). Since the motion after reaching point B is wholly elastic. the strain energy curve
thereafter has constant shape (a quartic function with constant coefficients). The state point
traverses it to successive peaks. as the amplitude decreases asymptotically to zero. The final
state is at one or the other of the two local minima of the V curve.

The character of the response depends on the shape of the final ~. (strain energy) curve.
In the examples of Fig. 3 there is a "potential hill" with crest at a small negative displace
ment. This is a position of unstable equilibrium. lying between two stable equilibria at the
local minima. The final V curve is governed by the prior plastic straining. This in turn is
affected by the damping. The U curve descends until one of its branches meets the potential
hill. It is then ··reflected". and for the rest of the response. it remains on the same side as
the original contact point. Which side it first strikes depends sensitively on the damping
coefficient and on the initial displacement. The origin of the "slots" of Fig. 2 is apparent.

These illustrations show how the combined energy plots "open up" the response
process. showing how the interplay between geometry changes. dynamics and energy losses
deterrnines the tinal out~:ome. They must be obtained by numerical integration. There is
instructive value in considering two special cases that are simpler and allow further insight.
These are treated in the fllllllwing sections.

4. ELi\STIC RECOVERY

In tht: examples discussed ahove. the structurt: model is assumt:d to have the same
elastic plastic material behaviors throughout the response. Important plastic strains actu
ally occur in the recovery motion. as well as in the preceding displacement. Here we shall
assume arhitrarily that the recovery motion is entirely clastic. In ell"ect we put ITo -- .X) for
time subseq lIent to reaching the peak displacement 4'".

The plastic strains I:~". 1;1;0 at angle 1/'0' acquired after unidirectiOlwl displacement. are

(8a)

(8b)

wherc

f/(F):::: I for F~ 0

/I(F):::: 0 for F< O.

for" :::: 0.0271 : (p\)11 :::: 0.058447. (WI:::: 0.085547.
With ,;~". I;S" inserted for ,;~ and I:S in eqns (6) and (7). all coellicients in eqns (6a) and

(7a) arc constant.
Although "elastic recovery" is apparc.:ntly an artificial concept. the behavior docs

represent essential features of the prototype uniform beam problem. In the real problem
the pulse loading produces fields of plastic strain and specific total energy. In order to
predict the final rc.:st configuration. one must know both of these fields. They require step
by-step numerical integr.ltion. and hence arc never known "exactly". When el'lstic recovery
is postulated these fields can be regarded as known parameters. Study of this case is a simple
w,ly to show nHIIlY of the general features of the complex uniform beam problem. excluding
possible dillicultics associated with numerical computations of plastic strains. Also. of
course, comparisons with solutions for the elastic-plastic case enable one to assess the role
of the actual further plastic deformations subsequent to the peak deflection.
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Fig. 4. Elastic recovery case: final displacement as function of the starting angle. for damping ratio
C= 0.0 I. Dashed lin.:s show .:nvelope of final vibration fur th.: undamped. elastic rl'Clwcry case.

A characteristic diagram for the elastic recovery case is shown in Fig. 4. This shows
the final displacement as a function of tPo for damping ratio ~ = 0.01. There are 16 narrow
"skltS" with negative values. Also shown for comparison (dashed lines) arc the envelope
curves for the elastic vibration in the undamped case. Note that when damping is omitted
there is no indication that negative tlnal displacements will occur: the vibration switches
from a ( + )-( - ) ttl a ( + )-( + ) type at 4)" ahout 0.()96. but there is no range in which the
envelope is wholly negative. In contrast, the Iinal displacement of the damped motion is
frequcntly ncgative for (p" in the range between about 0.OX5 and 0.096.

This alternation between positive ..nd ncgative Iinal displacements can he predicted
imllledi.. tely from the energy diagrams .. Iready discussed. These m.. ke it de.. r that if the
strain energy curve 1'«(/': 4',,) has two distinct relative minima separated hy .. "potenti..1
hill", the rinal state will oscillate hetween the two stahle equilihrium positions ..s the initial
displacement is varied. Unlike the examples of Fig. y, the function V((/,: 4',,) of eqn (7h)
can he plolled at once without the need for numeril.:'ll integration of elln (6a), sinl.:e the
plastic strains 1;';". d~" arc known in terms of (I'" [eqns (X)]. Figure 5 shows "(4J) for a typical
I.:ase. (p" = o.m. This Iigure also shows the curves of total energy U«(/J) for three values of
damping ratio ~. When ( = 0, U stays constant at the initial v.. lue Uti. [By eqn (7b).
Uti = V" = (I + 1)/2/1 = 25 x 10 4.1 Curves for two nonzero values of ~ arc induded. Thcse
show U decreasing in zig-zag fashion until the curve strikes and is rel1el:ted from the
potential hill. The value of (, is SUdl that contal:t is made on the left-hand side. Thereafter
the vibration remains on this side, and the negative statil: equilibrium position (Pc is finally
reached. With a small decrease of' to (1. the contal:t point switdlCS to the right-hand side
of the hill, and the final state is on the positive side.

Fig. 5. Elastic recovery ease: strain energy V(<p; rf>"l for <Pn = 0.09 (solid curve); total encq;y
nt{J; rf>nl curves f,'r two slightly ditTer.:n! damping ratios ~ I and C, (dolled and dashed. respectiwly).
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When 4>1) is gradually increased. with ~ held constant. the alternation in final dis
placement occurs because the crest orthe potential hill rises relative to the C(4); tPo) curve.
The process is the same as that depicted in Figs 3a and 3b. the only difference being that
in the elastic recovery case. the 1/(;/>: tP,,} curve is computed from the plastic strains pos
tulated at the sturt. rather than computed by step-by-step integration.

Prediction of the final displa.;ement for any specitied values of (P,) and; requires step
by-step integration of eqn 6a. This is straightfom'ard unless; is very small. as fur as the
mathematical problem is concerned. The range of tPo in which the anomalous "slots" occur
can be estimated. however. making use only of properties of the j '(tP: tP ..)curve. This has
bt.-en done for the elastic-plastic case (Borino et aL 1989). It is much casier when elastic
recovery is assumed. and is worth briefly sketching.

A negative final displacement can occur only if the n</>; cPo) curve exhibits the general
shape of the typic'll case drawn in Fig. 5. There must be three distinct real roots of the
equation for static equilibrium d F/drb = O. hence of the equ;.ltion

(9a)

where

(90)

(9c)

These arc I'M I:~II '" O. 1:1;/1 ~ O. 1\ lower bound on 4Jo for anmnalous nnal di~I'lI:Il.::cml.:nls is
provided by the well known condilion for !';{"tlcscclH.:e of real roots of a cubi!,; equation, In
the present case this condition retluires

! 1 I ,
7+ /1'",,027 4 • (to)

where :x. It arc functions of <fro us in eqn (9), Sohltiolls of cqn (10) provide a lower bound
IMi.

At ktrge values of rPn the crest at tPn of the potenti~t1 hiH lies ~lhovc the SHtrting value
V«(P/I; 4)/1)' The response is then alwayson the positive side ofthc hill. The limiting condition
is expressed by the equations

v(rbEJ; (PIl) "'" V(4Jn; (Pn)

V'{.hl :f!JnJ := O.

where V' "'" dF/dlp.
Now ~ ~tnd It correspond to I:~{I oF O. [:110 # 0, and arc cxprcssed by

a; = Hll!-2tP~-4!J!)

/f= -!"z4>n.

(lla)

(lIb)

flk)

( lId)

Solutions or eqn (II) provide un upper bound <P~ for '1 "'" (W27f. 4>f;:=: 0,083984.
4>;; = 0.095887. The limiting V(t/>~ tPo) curves ~m~ drawn in Fig, 6 (solid lines).

5, MOMENTLESS Iml\M MODEL

We consider next the sflecilll elise of a model that has no I1cxuntl resistance. by t,lking
the p.trameter If "'" !Ill = O. Thus, the two fhmges of the s.mdwich beam reduce to a single
thin flange of area A. which has strain 1: and dimensionless stress s = (1/(10' In addition to
the basic eqns (3). where .s. = S, we have
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(12a.b)

( 13)

[The damping coellicient may still be written in terms of a damping r'ltio , ~llld critic~11

damping coellicient (', defined as before for a model with nonzero '1; numerical v~llues of'
refer to (', computed fwm the previollsly listed v~t1ues of J. JI. '1; see eqn (6).] As before. we
assume that the pulse produces il peak displilcement cpu which is t;'lken itS the 10;'lding
p'lmllletcr. The corresponding stress itlld plastic stmin state 'In: 'lssumed produced by
unidirectional displ'lcement. We put f(t) == 0 during the subsequent recovery motion.

With '1 == () it is found th'lt pl'lstic !low occurs only during the first swing to the pc'lk
angle c/l u. There~lfter the plastic stmin rem'lins constant at the value I:~ reached when cP == cPu
itnd .\' = I. namely

I , I
I:r, == ., (Po - --.

- Jt
( 14)

Thus the threshold for plastic deformation is cP71 == (2!Jt) II~. The energy relation eqn (8)
now involves the strain energy V with £P == e~l so that

(15)

The positions of stable static equilibrium (local minim'l) are

(16)

The diagram is now symmetric in cP. and the crest of the potential hill at cP == 0 is at

( 17)

The full range of dynamic behavior can be deduced from the V(cP; cPo) diagram. Figure 7
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shows V(4); 4>0} for several values of 4>0. at or above the clastic limit 1M, = 0.07071. Consider
as a "typical" case 4>0 = 0.09. Motion starts at point O. where V(IPn; (Pn) = V(lpo; 4>0) =
I11I = 25 x (0 -~. Suppose first that damping is zero. Then the total energy V(lp; 4>n) remains
at this value. while the state point traverses the V(IP; IPn) curve between 0 and B; the
vibration continues indefinitely between these limits. The kinetic energy is represented by
the distance from the line OB to the V(I/); I/)n) curve. and the phase plane diagram has an
hour glass shape (as in Fig. lOb). symmetric about the 1/) and lfi axes. As (Pn is increased.
the value V(O: IPn) eventually reaches the starting value V( (Pn: IPn). By eqn (17) this happens
at IK = (411~) Ii! =0.1. At larger values of (Pn. the potential hill e:<tends above the line for
V = Vo• and the vibration remains on the positive side.

When damping is included «( > 0). the final state is at one of the two stable equilibrium
points (p = ±(:!I:~I)I!!. eqn (16). Which of the two is reached depends sensitively on' and
IPn. From the discussion in the previous sections. it is obvious that the final displacement
will alternate in sign either as , is increased. with 41 n constant; or as IPn is increased. at
constant (. A negative final displacement can occur when (/)n exceeds the elastic limit
1M, = (211t) I.!. which is a lower bound. so that

(I g)

The characteristc diagrams for' = 0 and' = 0.06 arc shown III Fig. X. from data
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obtained by numerical integration ofeqn (13). These agree with the descriptions outlined
above. However. the pattern of "slots" exhibited by the curve for the final displacements
of the damped model differs in important respects from those of Figs:! and 4. The lower
bound on their appearance is the elastic limit cP~J' and the calculations indicate that as cP~ is
approached from above they become extremely narrow and difficult to identify. This
difficulty can be understood by inspection of the energy diagrams of Figs 9a. 9b. As indicated
in Fig. 9a (for cPo = cP~). the beam executes infinitely many oscillations during its asymptotic
approach to the final rest state at cP = O. As cPo is increased slightly above cP~,. as in Fig. 9b.
the descending branches of the U(cP; cPo) curve are reflected in turn from alternate sides of
the potential hill of the V(cP: cPo) curve as it rises. These branches change slightly as cPo is
increased. but if this is ignored. the alternation of the final state between the values ± (:!l:~) I :

can be visualized as cutting successive branches of the U(cP; cPo) curve for cPo = cP~J' Any
finite rise from zero of the hill implies in the present case cutting an infinite number of
infinitely close branches. Computing all the slots in this case is not merely difficult but
impossible. since the width of the slot vanishes as cP~) is approached. This is in contrast with
the elastic recovery case treated above. where for finite' the first slot encountered as cPo is
increased has finite width. Difficulty in locating its boundaries is encountered only if' is
extremely small. In the moment less beam case. however. the ditliculty is present whatever
the damping magnitude. The basic difference is the symmetry of the V(cP; cPo) curve.

To apply these ideas in quantitative terms. we derive an approximate expression for
the widths of the slots shown in Fig. R. Assuming that the U«(p: (Po) curve changes negligibly
as cPo is increased. the width of a slot is approximately equal to the increment 6(po such
that the increase in V(O; (Po) corresponding to 6(pu is equal to the energy loss in damping
in one half-cycle. In order to estimate the laller. we shall assume that an approximate
expression for the velocity can he used which satisfies the main requirements of energy
conservation. Thus. to make our estimate we assume thal
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( 19)

where cPm is the deflection amplitude, Note that

(20)

since the amplitude decreases from cPu to the value such ~ '(¢m; ¢,,) == V(O; ¢u); by eqn
(15). cPm ~ 2(1::;,) 1 ~, To obtain ¢ in eqn (18) we write the following approximation for ¢(t) :

cP(t) == cP..,[xcos f1t + (I -:x) cos 3pt]

¢(t) == - p¢,.,[:x sin f1t +3( I -:x) sin 3pt].

(2Ia)

(2Ib)

where for a typical half-cycle the argument pt E [0. It] corresponds to ¢ E [(Pm. - ¢nrl. neglect
ing the decrease in amplitude due to damping in the half-cycle. We obtain reasonable values
of:x and p by matching known kinetic energies in the undamped case at pt == 1t!2 and pt<.
where (~ has minimum and maximum values. respectively. for pr: E (0. It).

The results are

(fit == 1t!2):

[
lJ-X:x JI~

sin flt e == .,'1.,6( -:x)

fl~ == 162( I -:x) JI. [41
,;, -I·r l'

I) I 11 ~ ., '11(-8.:x) (I,., _ •

(22a)

(22h)

Eliminating fI hetween thc last two. a gCllcral rdatioll hetwcell :x. (/' 11 and 4J.., is

3
:x == .

4'
(24a.b)

l);r (c, [31;\~ J' ~ ([I , IJ' ~
fl(I)1I == X k 0 1 == 0.OX3 I. ., (p'l -

, (I'll '~JI (I'll - Jl

For ( == 0.06 in our examplc we have

[ ., JI ~
fliPIl == 0.00352 I - -,

Jlf/J"

(25a)

(25b)

These results. eqns (25). show the slot width vanishing both as ( approaches zero and
as (PII approaches (2;JI) I.~. the elastic limit. In either case the final dellection becomes difficult
or impossible to compute, In the previous cases with 1/ > 0, the final response becomes
unpredictable in the limit as /; -+ O. 0 < ( < /;, The present case involves a new type of
comput<ltiomil unpredictability. not requiring ( to be small,

The magnitudes predicted by eqn (25b) have been compared with those according to
the data for Fig. 8. The coefficient 0.00352 is too large. If it is replaced by 0.00268 it gives
an excellent fit for the tirst 10 slots. The assumptions underlying these results are probably
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more accurate at smaller' values. The approximate vibration frequency given by eqn (22b)
has been compared with exact values, expressed in terms of an elliptic integral. Putting
<Pm = <Po and solving eqn (23) for x. the result for p is very close to the exact value except
near the transition point <Po = (4/Jl) I z, where it gives a finite magnitude instead of zero.

To show relations to other work we may adopt a different point of view. Up to now
we have considered the "impact problem", namely that of finding the final displacement of
a straight beam that is subjected to a short pulse loading. We now consider the behavior
of the initially deformed beam, i.e. of a shallow arch. which is subjected to various further
loads. Its shape is defined by the plastic strain f.~) due to the original pulse loading. We take
its "natural" state to be the positive equilibrium position <PC" = (2t;~) I Z. It is convenient to
write y = <P/cIh = <p!(2c~) I z. The equation of motion is

This can be re-written as

Y+r.I·+ b'.I-!y = F(r),

writing .i' = dy(dr, replacing the physical time t by a dimensionless time r. where

(26a)

(26b)

The energy equation corresponding to eqn (26b) is written as follows in terms of "initial"
values .I'll•.i'll'

where

T + V = U = Til + VII -}' f' .i' dy + f" F dy
r n "u

TU') = !,i'z; V(y) = ~(y~-I)~

Til = TU\); VII = VU'(J)·

(27a)

(27b.c)

The behavior of the system governed by eqn (26b) was studied by Dowell and Pezeshki
(1986); see .tlso Dowell (1988). They carried out numerical integrations to obtain time
histories. ph<lse plane plots and Poincare maps for excitation defined either by initial
conditions with .q(r) = O. or by external sinsusoidal forcing F = F(J sin (.or. In the first
("autonomous") case. phase pl'lIlc di<lgrams were constructed which show the zones within
which. the initial conditions lead to trajectories which cross they = 0 axis O. I. 2 ... times
(termed "shell plots" from thcir appearance). The trajectories that bound the lowest zones
appear to have significance in connection with the onset of chaos. as explored in their
investigation of the sinusoidally forced system.

Here we do not add materially to the results of Dowell and Pezeshki's (1986) study.
However. the new energy plots do perhaps make the shell diagrams and their significance
intuitively more transparent. From sketches of U and V the main features of both the
undamped and damped autonomous response can be quickly recognized qualitatively and
calculated approximately.
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(bl

Fig. 10. Plastically strained thin beam wilh zero damping. Relalion between encrgy diagrams (a)
and phase plane di'lgrams (1)). Heavy line at "'Ial energy Icvd U. corresponds to scparatrill eurve
in phase plane. ,. is elastic strain 'lnergy. r is displ'lcel1lent varial>lc. Shaded Mca in encq~y diagram
IIldicates locus of energy levels suth thall1lotion remains on onc side or Ihc other of the allis y = o.

The undamped case is illustrated in Fig. 10. where Fig. lOa shows the energy plots.
l/ere the total energy U is constant at its initial value. and the corresponding horizontal
lines arc drawn for three values. The middle one of these with V = V, corresponds to the
separ'ltrix in the phase plane diagram. Fig. lOb. At a smaller value VI < Vs the vibration
lies between positive displacement limits. while for the case U! > V, it lies between equal
positive and negative values.

Figure II illustrates the hehavior when damping is present. Suppose the motion is
started from rest at 0 I' The dashed line shows approximately how the curve of total energy

(bl

Fig. II. Plasticillly strained thin bcilm with damping. Reliltion between energy diagrams (a) and
phasc planc diagrams (Il). Straight lines in (a) are crude reprcsentiltion of totill energy variation as
functions of displacement y. Corresponding ph.lse plane curves arc shown in (b). Shaded area in
(a) indic'lles locus of initial energy such that the resulting motion remains on one side of the allis

y = n.
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U descends as energy is dissipated in damping. In each branch the curve is drawn crudely
as a straight line, representing the average slope of the actual curve whose slope varies from
zero at each end to maximum values near the equilibrium points y = ± I. The curve starting
from 0 I strikes the potential hill at D I and leads finally to the equilibrium point y = - I.
On the other hand, a starting point at Oz leads (dot-dash curve) to contact with the right
hand side and finally to equilibrium at y = + I.

Also drawn in Fig. Ila are two curves (solid lines). each with several branches. One
branch in each curve just touches the potential hill. These also are sketched crudely as
straight lines. The actual curves would make contact at the center (at zero slope), instead
of slightly to one side. but this discrepancy is unimportant for present purposes. Pairs of
these curves mark the boundaries of zones of starting conditions such that the final state is
either + I or - I. For example. a motion started from rest at any point between P I and P z
ends up at y = I. From these curves. with account taken of the signs of the velocity. one
can readily sketch the corresponding contours in the y •.'i (phase) plane. i.e. the "shell plots"
of Dowell and Pezeshki (1986). Figure II b shows sketches of the first few zones of a typical
shell diagram. Note that the shaded area of Fig. Ila defines the locus of energies such that
no crossing of the y = 0 axis takes place. The U(y). V(y) energy plots are essentially
equivalent to the y. j' phase plane plots. but are perhaps simpler and closer to the basic
mechanics. They may help to understand the seemingly more complex phase plane diagrams.
For example. they make it obvious that the shell diagram consists of two distinct interleaved
curves,

To illustrate how the two types of plots may be used together. we note that the width
l\.ro of the tirst zone of the shell diagram computed hy Dowell and Pezeshki (1986) can be
estimated by the approximate approach used in the previous section to estimate the slot
widths of the original "impact problem", By inspection of Fig, II b it is seen that

r1V(" ) f "..!J.V ~ .0 !J.)'o =}' j'd,'.
(1)'0 ....'

(28)

Evaluating the R HS approximately by the same proeess as was used following elln (19).
we obtain

9 (3 )IIZ
A I' =" .,.' = 00"6
0)' U I 8" 16 . - . (29)

Here we have put i' = 0.0168 as used by Dowell and Pezeshki (1986) ; the result agrees well
with the spacing shown in their Fig. 2.

6. CONCLUSIONS

These examples arc meant to illustrate ~IS simply as possible how the geometry changes
due to plastic straining interact with energy transfers ~lI1d losses to control the approach to
the final deformed state. In these nonlinear problems. where small plastic deformations
may playa crucial role. the new energy plots show dirl.'c/ly the occurrence of plastic strain
increments. and their effect on the evolving response. In contrast. phase plane diagrams
give only indirect evidence of these interactions. and by themselves in the present problems
they are of little usc.

The energy concepts provide insight into the nature of the solutions. For example. the
initial conditions that lead to certain final displacements m~\y be plotted as points in a plane
where the axes are the initial displacement and velocity. There arc well-defined bands within
which the initial conditions lead to a negative final displacement. Elsewhere they result in
a non-negative final state. These bands depend strongly on the damping coemcient. Exam
ples are given by Perego e/ al. (1989). Consideration of the energy diagrams with damping
shows at once why the boundaries between these "attracting basins" are smooth curves
that in general can be calculated accurately by standard methods. The exceptional situations
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(wry small damping and vanishing bending resistance) are elucidated by the energy dia
grams of the "special cases" discussed here. Contrary to the implications of a recent paper
(Poddar el 11/., 1988) these boundaries have no fractal structure (see Symonds el aI., 1988) .
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